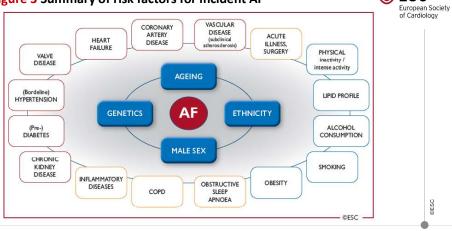
VHF und PCI: OAK, NOAK, Duale oder Triple Therapie: Was für welchen Patienten?

PD Dr. med. Gabor Sütsch

eview article


Patients with atrial fibrillation and coronary artery disease – Double trouble

Ewelina Michniewicz ^a, Elżbieta Mlodawska ^a, Paulina Lopatowska ^a, Anna Tomaszuk-Kazberuk ^a, Jolanta Malyszko ^b 옷 때

Coronary artery disease (CAD) is the most common cardiovascular disease while atrial fibrillation (AF) is the most common cardiac arrhythmia. Both diseases share associated risk factors – hypertension, diabetes mellitus, sleep apnea, obesity and smoking. Moreover, inflammation plays a causative role in both diseases. The prevalence of CAD in patients with AF is from 17% to 46.5% while the prevalence of AF among patients with CAD is low and it is estimated from 0.2% to 5%. AF is a well-established factor of poor short- and long-term prognosis in patients with acute myocardial infarction (AMI) and is associated with a marked increase in overall mortality.

The arrhythmia is common after cardiac surgeries and occurs in about 20 to 40% of patients after <u>coronary artery</u> bypass graft (CABG) surgery. It is predicted that between 5 and 15% of AF patients will require stenting at some point in their lives and will receive triple therapy with aspirin, <u>clopidogrel</u> or <u>ticagrelor</u> and oral <u>anticoagulation</u> (OAC).

Figure 3 Summary of risk factors for incident AF

www.escardio.org/guidelines

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation (European Heart Journal 2020-doi/10.1093/eurheartj/ehaa612)

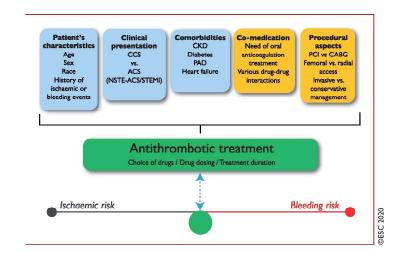
Figure 4 Clinical presentation of AF and AF-related outcomes

Patients with atrial fibrillation and coronary artery disease

- The combination of AF and CAD is not only a common clinical scenario, it is also a complex setting to combine anticoagulation and antiplatelet therapy.
- AF patients with relevant CAD have at least a CHA₂DS₂-VASc score of 1 (and mostly higher due to the presence of other cardiovascular risk factors) and hence an indication for OAC.
- The convention is that a period of DAPT (i.e. aspirin and a P2Y₁₂ inhibitor) is necessary to prevent stent thrombosis or recurrent events after an ACS and/or stenting for CAD—but that this is not sufficient for stroke prevention.
- Conversely, NOACs are essential for stroke prevention but on their own
 insufficient for preventing new coronary events in the immediate phase
 after ACS or stenting. The choice of antithrombotic drug combinations
 therefore represents a demanding clinical task: too little and risk a coronary
 event and/or stroke, too much and risk a bleeding event.

Table 9 factors for bleeding with OAC and antiplatelet therapy

Non-modifiable	Potentially modifiable	Modifiable	Biomarkers
Age >65 years	Extreme frailty ±	Hypertension/elevate SBP	GDF-15
Previous major bleeding	excessive risk of	Concomitant	Cystatin C
Severe renal impairment (on	falls ^a	antiplatelet/NSAID	/ CKD-EPI
dialysis or renal transplant)	Anaemia	Excessive alcohol intake	cTnT-hs
Severe hepatic dysfunction	Reduced platelet	Non-adherence to OAC	Von Willebrand
(cirrhosis)	count or function	Hazardous hobbies /	factor (+ other
Malignancy	Renal impairment	occupations	coagulation
Genetic factors (e.g., CYP 2C9	with CrCl <60 mL/min	Bridging therapy with	markers)
polymorphisms)	VKA management	heparin	
Previous stroke, small-vessel	strategy ^b	INR control (target 2.0-	
disease, etc.		3.0), target TTR >70% ^c	
Diabetes mellitus		Appropriate choice of OAC	
Cognitive impairment/dementia		and correct dosing ^d	


clinicals, self-monitoring/self-management, educational/behavioural interventions. For patients receiving VKA treatment. Dose adaptation based on patient's age, body

weight, and serum creatinine level.

www.escardio.org/guidelines

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation (European Heart Journal 2020-doi/10.1093/eurheartj/ehaa612)

Determinants of antithrombotic treatment in coronary artery disease.

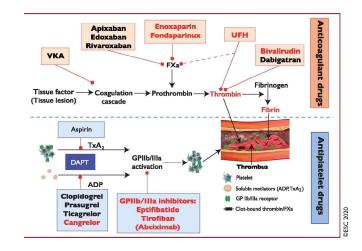
Eur Heart J, Volume 42, Issue 14, 7 April 2021, Pages 1289-1367

Typical situation

- A 68-years old patient undergoes elective coronary artery stenting on January 1st 2021. He is discharged on aspirin and clopidogrel. Uneventful interval. LV-EF is normal.
- · Arterial hypertension, prediabetes, hypercholesterolemia
- On July 1st, 2021, he is diagnosed with new onset AF.
- It was determined to administer long-term OAC (CHA₂DS₂-VASc-Score >3)
- Strategy?
- Aspirin was stopped, and the patient is treated with OAC plus clopidogrel for one year
- · At that time antithrombotic therapy will be re-evaluated.

2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation

Jan Steffel, Ronan Collins, Matthias Antz, Pieter Cornu, Lien Desteghe, Karl Georg Haeusler, Jonas Oldgren, Holger Reinecke, Vanessa Roldan-Schilling, Nigel Rowell, Peter Sinnaeve, Thomas Vanassche, Tatjana Potpara, A. John Camm, and Hein Heidbüchel


EP Europace, Volume 23, Issue 10, October 2021, Pages 1612–1676 https://doi.org/10.1093/europace/euab065 Published: 25 April 2021

NOACs vs. VKA in dual vs. triple therapy (1)

- Four dedicated prospective RCTs have addressed the issue of using a NOAC or VKA in a variety of combinations with antiplatelet agents to reduce bleeding events after PCI and/or an ACS in patients with AF.
- In essence, these trials focused on bleeding as the primary endpoint, with coronary events and stroke as important secondary outcomes.
- On aggregate, these studies showed that dual therapy with a NOAC plus a P2Y12 inhibitor reduced the risk of bleeding compared to triple therapy with VKA, aspirin and a P2Y12 inhibitor (mostly clopidogrel).
- This bleeding risk reduction appeared to be driven by both receiving a NOAC instead of VKA as well as by omitting aspirin, and this benefit was also observed in medically managed ACS/PCI patients with AF

Pharmacological targets for antithrombotic treatments

Eur Heart J, Volume 42, Issue 14, 7 April 2021, Pages 1289-1367

NOAC dosing in AF patients post-ACS/PCI

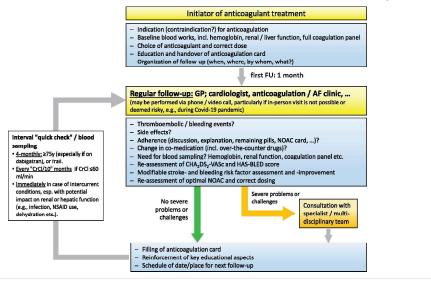
	Standard dose	Comments/dose reduction
Apixaban ²⁴⁴	5 mg BID	Dose reduction as for SPAF
Dabigatran ²⁴⁷	150 mg BID or 110 mg BID	110mg as for SPAF 403
Edoxaban ²⁴⁵	60 mg QD	Dose reduction as for SPAF
Rivaroxaban ²⁴⁶	15 mg QD	Dose reduction to 10 mg QD if CrCl 30–49 mL/min

In addition to single/dual antiplatelet therapy, where applicable.
BID, twice daily; CrCl, creatinine clearance; QD, once daily; SPAF, stroke prevention in atrial fibrillation.

Choice of anticoagulant therapy and initiation

Indication for anticoagulation and choice between VKA and NOAC

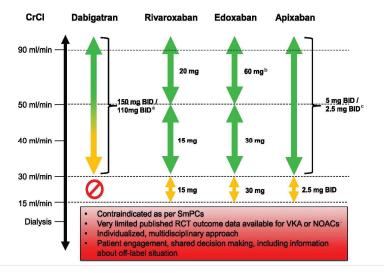
- After the indication for OAC is established, NOACs are preferred over VKAs in all NOACeligible AF patients
- When starting a NOAC, knowledge of current kidney and liver function is required as all NOACs are eliminated to some extent via the kidneys, and renal function affects NOAC dosing. Importantly, kidney function should be assessed using the Cockcroft—Gault formula as it was used in the four pivotal phase III trial. Indeed, use of other formulas including 'Modification of Diet in Renal Disease' (MDRD) and 'Chronic Kidney Disease—Epidemiology Collaboration' (CKD-EPI) may overestimate kidney function particularly in older patients and in those with low body weights.
- A baseline haematological profile should be obtained for reference during future follow-up.
- Bleeding risk, as estimated using the HAS-BLED score, is not in itself a reason to deny OAC to
 AF patients at risk of stroke or reduce the dose of the NOAC. Instead, particularly patients at
 high bleeding risk (e.g. HAS-BLED ≥3) should have their modifiable bleeding risk factors
 identified and addressed, and should be scheduled for an earlier and more frequent clinical
 follow-up.
- Similarly, frailty, cognitive decline and risk of falling should not generally be a reason not to
 anticoagulate patients. Care needs to be taken to minimize the risk of falling and to ensure
 optimal compliance and adherence. This topic is dealt with in detail in the 'NOACs in
 advanced age and frailty' section.


Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

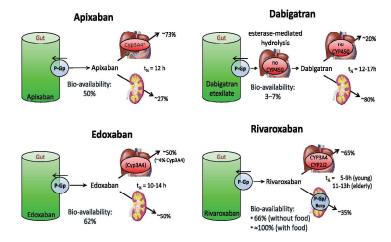
Absorption and metabolism of the different NOACs

	Dabigatran 106,376	Apixaban ⁵¹⁷	Edoxaban ⁵¹⁸	Rivaroxaban ^{519,520}
Bioavailability	3–7%	50%	62%	15 mg/20 mg: 66% without food, 100% with food
Prodrug	Yes	No	No	No
Clearance non- renal/renal of absorbed dose	20%/80%	73%/27%	50%/50%	65%/35%
Plasma protein binding	35%	87%	55%	95%
Dialysability	50–60%	14%	NA	NA
	(In part dialysable)	(Not dialysable)	(Not dialysable)	(Not dialysable)
Metabolism	Glucoronic acid conjugation	CYP3A4 (25%), CYP1A2, CYP2J2, CYP2C8, CYP2C9 CYP2C19	CYP3A4 (<4% of elimination)	CYP2A4 (18%) ⁵¹⁹ , CYP2J2
Absorption with food	No effect	No effect	6–22% more; minimal effect on exposure	+39% more (see above)
Absorption with H2B/PPI	-12% to 30% (not clinically relevant)	No effect	No effect	No effect
Time to peak levels (h)	3	3	2–4	2–4
Elimination half-life (h)	12–17	12	10–14	5–9 (young) 11–13 h (elderly)

Initiation and structured follow-up of patients on NOACs



Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676


Use of NOACs according to renal function

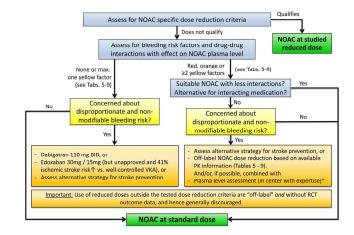
Absorption and metabolism of the different NOACs

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Dosing Errors

Even in settings with optimal patient education dosing errors are common in daily practice, and patients need to be informed on what to do in such cases.

Missed dose


A forgotten dose may be taken until half of the dosing interval has passed.
Hence, for NOACs with a twice daily (BID) dosing regimen (i.e., intake every 12 h), a forgotten full dose can be taken up until 6 h after the scheduled intake. For NOACs with a once daily (QD) dosing regimen, a forgotten dose can be taken up until 12 h after the scheduled intake. After these time points, the dose should be skipped, and the next scheduled dose should be taken.

Double dose

- For NOACs with a BID dosing regimen, the next planned dose (i.e. after 12 h) may be skipped, with the regular BID dosing regimen restarted 24 h after the double dose intake.
- For NOACs with a *QD dosing regimen*, the patient should continue **the normal dosing regimen**, i.e. without skipping the next daily dose.

NOAC selection based on drug-drug interactions and/or risk of bleeding.

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Dosing Errors

Uncertainty about dose intake

- For NOACs with a BID dosing regimen, it is generally advisable to not take another tablet/capsule, but to continue with the regular dose regimen, i.e. starting with the next dose at the 12 h interval.
- For NOACs with a QD dosing regimen, when thromboembolic risk is high (CHA₂DS₂-VASc ≥3), it may generally be advisable to take another tablet 6—8 h after the original (uncertain) intake and then continue the planned dose regimen. In case the thromboembolic risk is low (CHA₂DS₂-VASc ≤2) we advise to wait until the next scheduled dose.

Choice of P2Y12 inhibitor

- In the 2020 ESC AF guidelines, the use of ticagrelor or prasugrel as part of a triple therapy regimen is discouraged.
- Ticagrelor increases bleeding risk in patients on dual therapy when compared to clopidogrel (RE-DUAL PCI trial).
- Although only few patients have been included with a P2Y12-inhibitor other
 than clopidogrel into the above-mentioned RCTs, the benefit in terms of
 reduced bleeding risk with NOAC-based dual therapy compared to VKAbased triple therapy appears to be maintained regardless of the type of P2Y12
 inhibitor
- In post-ACS patients at high coronary thrombotic risk and low bleeding risk in whom otherwise a VKA- or NOAC-based triple therapy would be warranted, dual therapy with a NOAC plus ticagrelor could be considered instead. Further data, including dedicated RCTs, are warranted in this area. Indeed, up to 40% of patients on clopidogrel may reach insufficient platelet inhibition.

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

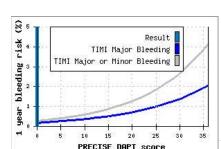
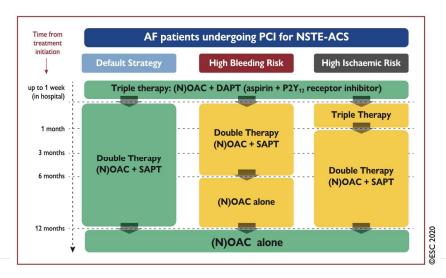

	PRECISE-DAPT-Score	DAPT-Score	
Score-Berechnung	Score-Nomogramm	Alter ≥ 75 65 bis < 75 < 65 Rauchen Diabetes mellitus ACS bei Präsentation Vorausgegangenes ACS oder PCI Paclitaxelfreisetzender Stent Stentdiameter < 3 mm Herzinsuffizienz oder LVEF < 30% Stent in Venenbypass	-2 Punkte -1 Punkt 0 Punkte +1 Punkt +1 Punkt +1 Punkt +1 Punkt +1 Punkt +1 Punkt +2 Punkte +2 Punkte
Score-Bereich	0 bis 100 Punkte	−2 bis 10 Punkt	e
Cut-off-Werte	Score ≥ 25 → kurze DAPT Score < 25 → Standard-/lange DAPT	Score ≥ 2 → lange Score < 2 → Standard	
Kalkulator	www.precisedaptscore.com	www.daptstudy.e	org

Abbildung 1: Risikoscores, validiert für die Dauer der dualen antithrombozytären Therapie (DAPT; ACS: akutes Koronarsyndrom, PCI: perkutane Koronarintervention, LVEF: linksventrikuläre Ejektionsfraktion): Für die Berechnung des PRECISE-DAPT-Scores wird das Score-Nomogramm verwendet. Jeder Wert der 5 Variablen wird markiert, von der Markierung wird eine vertikale Linie zum Nomogramm gezogen und der entsprechende Wert bestimmt. Die Summe aller 5 Variablen ergibt den PRECISE-DAPT-Score (modifiziert nach Valgimigli et al. [2]).

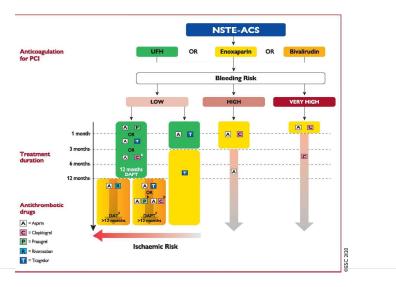
PREdicting bleeding Complications In patients undergoing Stent implantation and subsEquent Dual Anti Platelet Therapy

- Haemoglobin Values collected in close proximity to the index procedure (es. 12 g/dL)
- · Age (years)
- White blood cells Values collected in close proximity to the index procedure
- Creatinine Clearance (ml/min) Values collected in close proximity to the index procedure (es. 75 ml/min)
- Prior Bleeding History of spontaneous bleeding requiring medical attention


Risk criteria for extended treatment with a second antithrombotic agent

High thrombotic risk (Class IIa)	Moderate thrombotic risk (Class IIb)
Complex CAD and at least 1 criterion	Non-complex CAD and at least 1 criterion
Risk enhancers	
Diabetes mellitus requiring medication	Diabetes mellitus requiring medication
History of recurrent MI	History of recurrent MI
Any multivessel CAD	Polyvascular disease (CAD plus PAD)
Polyvascular disease (CAD plus PAD)	CKD with eGFR 15–59 mL/min/1.73 m ²
Premature (<45 years) or accelerated (new lesion within a 2-year time frame) CAD	
Concomitant systemic inflammatory disease (e.g. human immunodeficiency virus, systemic lupus erythematosus, chronic arthritis)	
CKD with eGFR 15–59 mL/min/1.73 m ²	
Technical aspects	
At least 3 stents implanted	
At least 3 lesions treated	
Total stent length >60 mm	
History of complex revascularization (left main, bifurcation stenting with ≥2 stents implanted, chronic total occlusion, stenting of last patent vessel)	
History of stent thrombosis on antiplatelet treatment	

Suggested strategies to reduce bleeding risk related to percutaneous coronary intervention


- •Anticoagulant doses adjusted to body weight and renal function, especially in women and older patients
- •Radial artery approach as default vascular access
- •Proton pump inhibitors in patients on DAPT at higher-than-average risk of gastrointestinal bleeds (i.e. history of gastrointestinal ulcer/haemorrhage, anticoagulant therapy, chronic non-steroidal anti-inflammatory drugs/corticosteroid use, or two or more of:
 - Age ≥65 years
 - Dyspepsia
 - Gastro-oesophageal reflux disease
 - Helicobacter pylori infection
 - · Chronic alcohol use
- •In patients on OAC
 - PCI performed without interruption of VKAs or NOACs
 - In patients on VKAs, do not administer UFH if INR >2.5
 - In patients on NOACs, regardless of the timing of the last administration of NOACs, add low-dose parenteral anticoagulation (e.g. enoxaparin 0.5 mg/kg i.v. or UFH 60 IU/kg)
- •Aspirin is indicated but avoid pre-treatment with P2Y₁₂ receptor inhibitors

Algorithm for antithrombotic therapy in non-ST-segment elevation acute coronary syndrome patients with atrial fibrillation undergoing percutaneous coronary intervention or medical management.

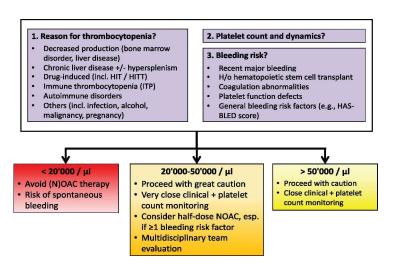
Algorithm for antithrombotic therapy in non-ST-segment elevation acute coronary syndrome patients without atrial fibrillation undergoing percutaneous coronary intervention.

Eur Heart J, Volume 42, Issue 14, 7 April 2021, Pages 1289-1367

Duration of triple therapy after ACS/PCI

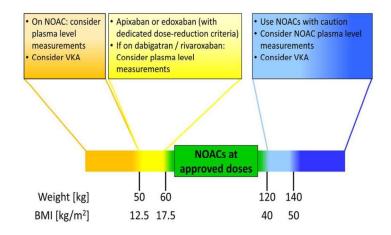
- According to the current 2020 ESC guidelines for AF as well as for non-STelevation acute coronary syndrome (NSTE-ACS), a short course of triple therapy is recommended for up to 1 week in all patients with AF undergoing PCI
- In medically managed NST-ACS patients, combination of a NOAC with only a single antiplatelet agent (preferably clopidogrel) is recommended from the event onwards
- However, the time frame of inclusion for the four aforementioned NOAC RCTs ranged from several hours after PCI up to >10 days. As such, a selection bias towards lower-risk patients cannot be excluded; furthermore, a variable course of triple therapy may have been given to a substantial number of patients subsequently randomized to NOAC-based dual therapy
- Finally, although bleeding events were consistently reduced across the four NOAC trials by NOAC-based dual therapy this did not translate into a reduction in all-cause mortality (as compared to VKA-based triple therapy). Therefore, a low threshold for prolonging triple therapy with DAPT and a NOAC up to 30 days may be advisable in patients with a high atherothrombotic risk, including those after a complex PCI or with a history of stent thrombosis. In contrast, continuation of triple therapy beyond 30 days rarely seems warranted.

NOAC use in frail patients

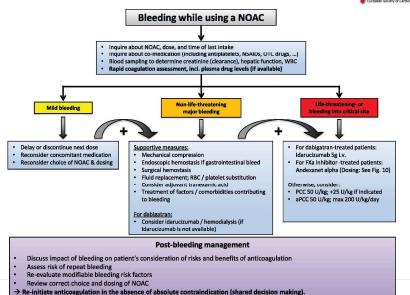

Very Fit	People who are robust, active, energetic and motivated. These people commonly exercise regularly. They are among the fittest for their age.
Well	People who have no active disease symptoms but are less fit than category 1. Often, they exercise or are very active occasionally, e.g. seasonally.
Managing Well	People whose medical problems are well controlled but are not regularly active beyond routine walking.
Vulnerable	While not dependent on others for daily help, often symptoms limit activities. A common complaint is being "slowed up", and/or being fired during the day.
Mildly Frail	These people often have more evident slowing and need help in high order with ADLs (finances, transportation, heavy housework, medications). Typically, mild frailty progressively impairs shopping and walking outside alone, meal preparation and housework.
Moderately Frail	People need help with all outside activities and with keeping house. Inside, they often have problems with stairs and need help with bathing and might need minimal assistance (cuing, standby) with dressing.
Severely Frail	Completely dependent for personal care, from whatever cause (physical or cognitive). Even so, they seem stable and not at high risk of dying (within $^{\sim}$ 6 months).
Very Severely Frail	Completely dependent, approaching the end of life. Typically, they could not recover even from a minor illness.
Terminally III	Approaching the end of life. This category applies to people with a life expectancy <6 months, who are not otherwise evidently frail.

The 'Canadian Study of Health and Aging' (CHSA) Clinical Frailty Scale, based on comprehensive geriatric assessment including structured interview

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676


NOACs in patients with thrombocytopenia

NOACs in under- and overweight patients



Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Management of bleeding in patients taking NOACs

Treatment of patients with chronic coronary syndrome

- The Japanese multi-centre, open-label 'Atrial Fibrillation and Ischemic Events with Rivaroxaban in Patients with Stable Coronary Artery Disease' (AFIRE) trial demonstrated that continuing rivaroxaban 15 mg QD monotherapy beyond 1 year after a revascularization procedure in AF patients not only decreased the risk of ISTH bleeding (primary safety outcome) but also demonstrated non-inferiority for the primary composite endpoint of cardiovascular events (stroke, systemic embolism, MI, unstable angina requiring revascularization) or death from any cause compared with the combination of rivaroxaban and antiplatelet therapy.
- Indeed, the trial was stopped prematurely due to an increased mortality in the combination therapy arm. Although it is formally unclear if these results translate to other NOACs, other doses, and other populations, these data suggest that most AF patients with chronic CAD should be transitioned to NOAC monotherapy without an antiplatelet agent as recommended in current ESC AF guidelines

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Acute management of elective PCI or ACS in AF **EHRA** European Heart patients treated with NOAC Rhythm Association ACS **Elective PCI in CCS** On admission: Stop NOAC: last dose ≥24h before intervention Stop NOAC Load with ASA (150-300 mg) STEMI: Load with P2Y12 inhibitor (not in NSTE-ACS) Consider alternatives: Bypass surgery NSTE-ACS STEMI (- plain balloon angioplasty) Periprocedural anticoagulation Primary PCI (preferred) Non-urgent Urgent Fibrinolysis per local practice: Delay PCI Approach as Radial access Relative contra-Start fondaparinus per primary PCI indication in patients UFH (per ACT/aPTT) Bivalirudin (preferred) or on OAC. LMWH ≥12h after Additional UFH, Transfer to primary Avoid Gn IIb/IIIa inhibitors last NOAC LMWH, bivalirudir PCI center ASAP Avoid upstream (regardless of last If not possible: very bivalirudin, UFH, or NOAC intake) carefully weigh Stent type: IIb/IIIa inhibitors Avoid Gp IIb/IIIa inhiagainst bleeding risk. Prefer contemporary DES bitors unless bail-out esp. if NOAC plasma (BMS and 1st gen DES to be avoided) Avoid fondaparinux level not below reference range. After discontinuation of parenteral anticoagulation: (re-)start NOAC in combination with antiplatelet therapy (see Fig. 17) Discharge with pre-specified step-down plan

Scenario 1: coronary interventions in atrial fibrillation patients on non-vitamin K antagonist oral anticoagulants (1)

- Performing a PCI (scheduled or not) under NOAC is different than under VKA for several reasons, and various aspects and uncertainties need to be taken into consideration, including:
 - timepoint of the last dose, adherence, and renal function;
 - variability in renal function in an acute setting;
 - singular factor II or Xa blockade vs. multifactor antagonism;
 - uncertainty about the extent of anticoagulation in the absence of established tests, and hence
 - uncertainty about stacking of additional periprocedural anticoagulants, etc.
- Temporary discontinuation of the short-acting NOACs may allow for safe initiation of antiplatelet therapy and standard local anticoagulation practices peri-procedurally.
- In contrast, NOACs should be continued in non-invasively managed ACS patients.

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Scenario 1: coronary interventions in atrial fibrillation patients on non-vitamin K antagonist oral anticoagulants (2)

- New-generation drug-eluting stents are preferred to shorten exposure to dual or triple therapy after the procedure but also to avoid the need for repeat interventions.
- Sole balloon angioplasty or bypass surgery should always be considered as an alternative in patients in need for chronic anticoagulation since they can reduce the need for long-term dual or triple therapy.
- There is no longer a reason to opt for a bare metal stent as a strategy to reduce DAPT duration.

Scenario 2:

management of the patient with a recent acute coronary syndrome (<1 year) who develops newonset atrial fibrillation

- ACS guidelines recommended DAPT for up to 1 year after the acute event in patients without indication for OAC, and high-risk patients might require an even longer DAPT duration.
- In high bleeding-risk ACS patients, however, current ESC guidelines allow for shorter DAPT durations (3–6 months).
- If AF develops during the first year after an ACS and there is an indication for
 anticoagulation, a NOAC should be started and the need for continuing DAPT
 should be carefully weighed against the increased bleeding risk. Beyond 1
 month after the event, aspirin can be stopped in the majority of such
 patients as discussed above.

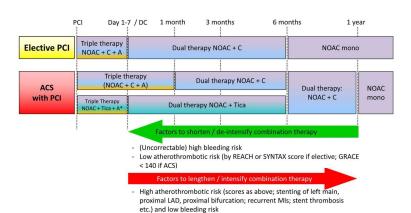
Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Treatment of left ventricular thrombus after myocardial infarction in patients with atrial fibrillation

- In the absence of randomized studies, it remains uncertain whether a NOAC is effective in the treatment of left ventricular thrombi complicating a large infarction. One observational study suggests that NOACs were associated with a higher incidence of thromboembolic events compared to VKA in (mostly non-AF) patients with a left ventricular thrombus, while others showed a similar rate of thrombus resolution.
- Although residual confounding can never be excluded in these settings, VKA should be viewed as standard of care for the treatment of patients with LV thrombus until more data are available.
- Only in very special situations (e.g. no VKA monitoring possible, no stable INR despite maximal efforts, etc.) NOACs may be evaluated after clear communication and consent from the patient about the lack of data and the off-label situation.

Scenario 3:

a chronic coronary syndrome patient (acute coronary syndrome ≥1 year ago) develops atrial fibrillation


- Patients with a CCS developing AF should receive anticoagulation, depending on their CHA₂DS₂-VASc score (which per definition will be ≥1).
- A NOAC without any antiplatelet agent appears to be the preferred strategy
 for these patients as discussed above, based on the results of the four
 landmark NOAC trials (which included up to 15–20% of patients with a prior
 MI) and the 'Atrial Fibrillation and Ischaemic Events with Rivaroxaban in
 Patients with Stable Coronary Artery Disease' (AFIRE) trial.
- An additional antiplatelet agent should only be considered in individual patients with a very high ischaemic and low bleeding risk.

Europace, Volume 23, Issue 10, October 2021, Pages 1612-1676

Summary

Anticoagulation therapy after elective PCI or ACS in patients with AF

In all patients:

- · Avoid use of BMS / first generation DES
- · Use PPI if on triple / dual therapy
- Minimize bleeding risk by assessing and treating modifiable bleeding risk factors (e.g., hypertension, etc.)
- Close follow-up; check for signs of (occult) bleeding

Thank you for your attention